首页> 外文OA文献 >Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species
【2h】

Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species

机译:28种澳大利亚木本植物幼苗相对生长率,氮生产率和根与叶功能之间的种间关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

1. Seedling relative growth rate (RGR) is often decomposed into the product of specific leaf area (leaf area per leaf mass, SLA), net assimilation rate (rate of mass increase per unit leaf area per unit time, NARa) and leaf mass ratio (ratio of leaf to total dry mass, LMR). Commonly, most cross-species variation in RGR is accounted for by variation in SLA, while no general relationships occur between RGR and either NARa or LMR. NARa can be factored into the product of leaf nitrogen productivity (rate of mass increase per unit leaf nitrogen per unit time, LNP) and leaf nitrogen concentration (area basis, LNCa). In this way the influence on RGR of leaf nitrogen – how it is displayed, and how it is utilized – can be investigated. 2.  Seedlings of 28 Australian woody dicot species were grown under controlled, favourable conditions. Variation in SLA, LNP, LNCa and LMR explained c. 44%, 22%, 19% and 15% of variation in RGR, respectively. SLA and LNP were positively associated with RGR, while LNCa was negatively associated with RGR. LNP and LNCa were negatively correlated, the counteracting trends between RGR and each of these attributes resulting in no relationship between RGR and NARa. It is argued that this phenomenon may be widespread and may contribute to the inconsistency of reported relationships between NARa and RGR. 3.  The functional balance between leaves and roots can be described in terms of mass allocation and morphology (static ratios or allometric coefficients) or, alternatively, in terms of leaf ‘activity’ (NAR) and root ‘activity’ (nitrogen uptake rate, NUR). At any given time most species allocated greater mass to leaves than to roots, but species with low RGR tended to be partitioning a greater ongoing proportion of new biomass to the roots rather than to the leaves, resulting in a proportionally greater increase in root surface compared with leaf surface over time. Nitrogen uptake rate was correlated with leaf and whole-plant nitrogen concentration, but not with other attributes. While it is clear that root and leaf functions must be co-ordinated (and thus in balance) for growth to occur, there is little evidence that this balance varies systematically with RGR across all species.
机译:1.幼苗的相对生长率(RGR)通常分解为特定叶面积(每叶质量的叶面积,SLA),净同化率(每单位时间每单位叶面积的质量增加率,NARa)和叶质量的乘积比率(叶片与总干重之比,LMR)。通常,大多数RGR的跨物种差异是由SLA的差异引起的,而RGR与NARa或LMR之间没有一般关系。可以将NARa纳入叶氮生产率(每单位时间每单位叶氮的质量增加速率,LNP)和叶氮浓度(面积,LNCa)的乘积中。通过这种方式,可以研究叶氮对RGR的影响-如何显示氮以及如何利用氮。 2. controlled在受控的有利条件下种植了28种澳大利亚双子叶植物的幼苗。 SLA,LNP,LNCa和LMR的变化说明c。 RGR的变化分别为44%,22%,19%和15%。 SLA和LNP与RGR正相关,而LNCa与RGR负相关。 LNP和LNCa呈负相关,RGR与这些属性之间的抵消趋势导致RGR与NARa之间没有关系。有人认为这种现象可能很普遍,并且可能导致NARa和RGR之间的报道关系不一致。 3. leaves叶和根之间的功能平衡可以用质量分配和形态(静态比率或异速系数)来描述,或者用叶的“活性”(NAR)和根“活性”(氮吸收率, NUR)。在任何给定的时间,大多数物种分配给叶片的质量要大于根部,但是RGR低的物种倾向于将更大比例的新生物量分配给根部而不是叶子,与根部相比,成比例地增大随着时间的推移叶片表面。氮素吸收速率与叶片和整株植物的氮含量相关,但与其他属性无关。虽然很明显,必须协调根和叶的功能(才能达到平衡)才能发生生长,但几乎没有证据表明这种平衡会随着所有物种的RGR而系统地变化。

著录项

  • 作者

    Wright, I. J; Westoby, M;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号